

Document type :

Aircraft serial number:

Flight and operational manual

Registration:

TL-3000 SIRIUS

TL Ultralight s.r.o.

Airport, building 84 503 41 Hradec Kralove Czech Republic **Tel:** +420 495 211 753 +420 495 218 910 **Tel / Fax:** +420 495 213 378 www.tl-ultralight.cz

0 List of changes

Change, amendment serial number	Bulletin number	Changed pages	New page release or change date	Execution date and signature

CONTENTS

Section 1 General information	4-10
Section 2 Operational limitations	11-21
Section 3 Emergency procedures	22-26
Section 4 Normal procedures	28-34
Section 5 Performances	36-39
Section 6 Weight and gravity centre position	41-43
Section 7 Aircraft and its systems description	45-49
Section 8 Operating, servicing and maintenance	51-60
Section 9 Amendments	62-63

Section 1 General information

1.1	Introduction	5
1.2	Certification attest	6
1.3	Abbreviations and definitions	7
1.4	Warnings, notifications and notes	8
1.5	Technical data	8
1.6	Three-view drawing	10

1.1 Introduction

This flight and operational manual produced by TL Ultralight is designed to introduce TL -3000 SIRIUS aircraft to its operator. It provides the basic usage information and operational procedures ensuring the most effective aircraft utilization by the operator.

Each holder of this flight and operational manual and/or its parts is obliged to maintain it in updated state by implementation of amendments, revisions and changes as published in the bulletin through the following web-page:

http://tl-ultralight.cz/en/bulletin/

Handwritten amendments and revisions of this manual are not allowed except of situations when the security interest requires an immediate amendment or revision.

This flight and operational manual is divided by topics into several sections that are split into paragraphs according to the significance and importance of their subject matter. In case of page replacement, amendment or handwriting revision, such fact must be recorded on the Changes log page by recording the change or amendment serial number, bulletin number in which the change was published or page changed or amended, new page or change publishing date, and implementation date and signature.

This operational manual is established such way that any revision or amendment execution is only possible by replacing or adding the appropriate pages and discarding the obsolete pages. Therefore, it is necessary that all manual holders pay increased attention to recording all changes and amendments and their implementing.

Caution:

This aircraft, belonging to sports aviation gadgets, is not subject to Civil Aviation Authority of the Czech Republic approval and is operated by the user at his/her own risk.

1.2 Certification attest

This aircraft has been approved by the Amateur Light Aircraft Association of the Czech Republic in accordance with the regulation "Ultralight Aircraft Airworthiness Requirements".

The type certificate Nr. ULL-01/2010 was issued on April 1st, 2010.

1.3 Abbreviations and definitions

CAS	The calibrated airspeed is the indicated airspeed corrected for the positional and instrumental error. The calibrated airspeed is equal to the real airspeed in the ISA at the see level.	
IAS	The indicated airspeed is the airspeed shown on the aircraft Pitot static speed indicating system with the scale that is adjusted to include the influence of the adiabatic stream coercibility at standard atmosphere zero altitude but not corrected for the speedometer system error. ($\varsigma o/\varsigma$)1/2. ςo = air specific weight at the see level ς = air specific gravity at given altitude	
ISA	International standard atmosphere	
MAC	Mean aerodynamic chord	
V _{NE}	Maximum never exceed speed	
V _{NO}	Maximum structural cruising speed	
V _{RA}	Maximum turbulence penetrating speed	
V _A	Design manoeuvring speed	
V _{FE}	Maximum flap extended speed	
G _{LET}	Empty aircraft weight (kg)	
G _{PAL}	Fuel weight (kg)	
G _{POS}	Crew weight (kg)	
G _{ZAV}	Luggage weight (kg)	
G _P	Aircraft weight load on the nose gear (kg)	
G _H	Aircraft weight load on the main undercarriage (kg)	
X _T	Empty aircraft centre of gravity distance from the index plane, i.e. from the wing leading edge (mm)	
X _{% LET}	Empty aircraft centre of gravity position (% MAC)	
X _{% KONFIGURACE}	Required configuration centring position (% MAC)	

1.4 Warnings, cautions and notes

This flight and operational manual provides the following definitions of warning, caution and note:

WARNING:

<u>Overlooking an appropriate procedure leads to instant or significant flight safety</u> <u>decrease.</u>

CAUTION:

Overlooking an appropriate procedure leads to short or long lasting minor flight safety decrease.

NOTE:

It notifies about a special point that is not directly related to the flight safety but is important or unusual

1.5 Technical data

TL-3000 Sirius ultra light aircraft is a two-seat classical design high-wing monoplane with the nose type undercarriage. The entire aircraft is built of the composite materials.

Wing	
Wing span	9,4 m
Length	6,75 m
Height	2.25 m
Wing area	11,15 m ²
Wing span – cord ratio	7,92
Area load	40,3 kg/ m ²
Root profile depth	1,3 m
Tip profile depth	0,9 m
Ailerons	
Aileron span	1.87 m
Aileron area	0.51
Aileron angle	Upwards 15 ⁰
	Downwards 9 ⁰
Flaps	
Flap span	2.07 m
Flap area	0.66 m ²
Flap angle	Start 10.5 ⁰

	Interposition 28 ⁰	
	Landing 45 ⁰	
Horizontal tailplane		
Horizontal tailplane span	3.0 m	
Horizontal tailplane area	1.62 m ²	
Elevator angle	Upwards 19,5 [°]	
	Downwards 11 ⁰	
Vertical tailplane		
Vertical tailplane area	1.45 m ²	
Rudder angle	+/- 20 ⁰	
Undercarriage		
Main wheel-spacing	2.17 m	
Wheelbase	1.53 m	
Undercarriage wheel dimensions	400 X 100	
Atmospheric pressure in the tyres	2.0 kPa	
Nose wheel rebound	Coil spring	
Main undercarriage rebound	Tyres, undercarriage leg resilience	
Brakes	Hydraulic disc brakes	

Fuel tank volume 130 litres

Empty aircraft weight	kg
Wing mean aerodynamic chord length	MAC = 1230 mm
(MAC)	

Engine

Rotax 912 ULS, a boxer type four-stroke four-cylinder, the heads of cylinders are liquid-cooled and the cylinders are air-cooled. The engine is integrated with a reducer and two carburettors. It is equipped with a double contactless condenser ignition.

Propeller

The aircraft is equipped with a three-blade, DUC ground adjustable pitch propeller.

Rescue system GRS 473

1.6 Three-view drawing

Section 2 Operational limitations

Introduction	12
Operating speeds	12
Speed indicator	13
Power plant	13
Power plant instruments markings	15
Other instruments markings	16
Weight	16
Centre of gravity position	17
Approved manoeuvres	19
Flight multiples	19
Aircrew	19
Types of operation	20
Fuel	20
Other limitations	20
Limitation placards	20
	Operating speeds Speed indicator Power plant Power plant instruments markings Other instruments markings Weight Centre of gravity position Approved manoeuvres Flight multiples Aircrew Types of operation Fuel Other limitations

2.1 Introduction

Section 2 includes operational limitations, instruments markings, and basic placards (labels), necessary to ensure safe operating of the aircraft, its engine, standard systems and equipment.

2.2 Flight speeds

	Speed	IAS(km/h)	NOTE
V _{NE}	Maximum never exceed speed	253	Do not exceed this speed in any flight regime
v _H	Maximum speed of horizontal flight at max. steady engine power	226	Engine RPM 5400 per min
V _{OPT}	Optimal cruising speed	178	Engine RPM 4500 per min
VA	Design manoeuvring speed	150	Above this speed use 1/3 rudder deflection and do not make sudden steering interventions – it could result in aircraft overload.
V _{FE}	Maximum speed with the elevated flaps		Do not cross this speed with the flaps elevated in positions 1, 2, and 3
	Flaps position 1	140	
	Flaps position 2	120	
	Flaps position 3	105	

2.3 Speed indicator markings

Speed indicator markings and colour code significance are shown in the table:

Marking	Value or range [IAS km/h]	Significance
White arch	58-140	Operating range with the elevated flaps
Green arch	66-200	Normal operational range. The upper limit is the maximum structural cruising speed
Yellow arch	200-253	Increased caution regime! Manoeuvres must be performed with caution and only in a calm atmosphere
Radial red line	230	Maximum speed in all flight phases

2.4 Power plant

Engine manufacturer:	BOMBARDIER-Rotax-GmbH (Austria)		
Engine model:	Rotax-912UL	Rotax-912ULS	
Engine type:	four-stroke for	four-stroke four-cylinder boxer type	
Maximum power:	80 hp	100 hp	
Full take-off power limit	5800 rpm 1/min (5 min)		
Max. permanent rotation speed	5500 rpm 1/min		
Idle run rotation speed	approx. 1400 rpm 1/min		
Maximum cylinder head temperature at the measuring point	150 ºC (300 ºF)	135 ºC (284 ºF)	
Oil temperature:- operating - minimum - maximum	90-110 ºC (190-250 ºF) 50 ºC (120 ºF) 140 ºC (285 ºF)	90-110 ºC (190-250 ºF) 50 ºC (120 ºF) 130 ºC (266 ºF)	

Exhaust fume temperature:	
- maximum starting	880 ºC (1620 ºF)
- maximum	850 ºC (1560 ºF)
- operating, at the distance of	800 ºC (1470 ºF)
70 mm from the cylinder	

Oil pressure: - operating - minimum - maximum	2,0-5,0 bar (29-73 psi) over 3500 RPM 0,8 bar (12 psi) under 3500 RPM 7 bar (100 psi); max. pressure is short-time tolerable during a cold engine start	
Fuel pressure: - operating - maximum	0,15-0,4 bar (2,2-5,8 psi) 0,4 bar (5,8 psi)	
Fuel: (European norm)	EN 228 super min. 90 octanes	EN 228 super min. 95 oct.
Oil:	According to API "SG" or higher (Castrol GTX 3)	
Minimum engine starting temperature	-25 C	
Maximum engine starting temperature	+50 C	

Propeller manufacturer:	DUC Hélices, Lentilly-France
Propeller type:	DUC three-blade, ground adjustable pitch propeller

Caution:

This engine type is not certified as an aviation engine. In spite of the maximum attention paid to its manufacturing, the engine can fail anytime and the pilot is fully responsible for the consequences of such failure.

2.5 Power plant instrument markings

Instrument	Red arch - lower limit	Yellow arch	Green arch	Yellow arch	Red arch - upper limit
Tachometer			1400-5500	5500-5800	5800
Fuel pressure	0 – 0,7	0,7-2,5	2,5-5,8	5,8-6,5	6,5-7,3
Filling pressure (INHG)			0 - 31	31 - 32	32 - 33,3
Oil pressure (PSI)	0 - 15	15 - 20	20 - 90	90 - 95	95 - 99
Oil temperature (°C)	0 - 50	50 - 90	90 - 110	110 - 140	
Cylinder temperatur e (°C)	30 - 40	40 - 50	50 - 122	122 - 130	130 - 140
Exhaust fume temperature (°C)		150 - 205	205 - 815	815 - 870	870

NOTE:

Green arch - normal operation Yellow arch –increased attention range Red arch – lower and upper limits

2.6 Other instrument markings

Fuel level indicator

Minimum start fuel volume 10 litres

Inexhaustible volume 2x1 litres

2.7 Weight

Maximum take-off weight	472,5 kg
Maximum fuel weight	93,5 kg
Maximum one seat load	90 kg
Maximum load weight behind the seats	25 kg
Minimum crew weight	60 kg

2.8 Centre of gravity position

Empty aircraft weight determined by weighing kg

Instructions for aircraft centre of gravity determination from the diagram hereunder:

- 1) Subtract the centre of gravity position shift increment for each individual item (crew, luggage, fuel) on the graduated scale.
- 2) Sum up so determined increments and add them to the empty aircraft centring.
- 3) The total gives the aircraft centre of gravity position at the chosen payload of each item given in MAC % and must fit within the allowed centre of gravity position range.

CAUTION:

Aircraft centre of gravity determination from the diagram is only approximate. Precise centre of gravity determination requires aircraft weighing connected with the calculation stated in the chapters 6.3 and 6.4 of this manual.

2.9 Approved turns

This aircraft is approved for the ultra light category. Any turns necessary for the normal flight, stall training up to 30° stalling over the horizon and sharp turns up to 60° tilt.

WARNING:

This aircraft category is allowed only for non-acrobatic operations. Intended spins and drops are forbidden!

2.10 Flight multiples

2.11 Crew

The crew consists of 1 or 2 pilots. Minimum crew weight is 60kg. In case this condition is not met, it is necessary to attach appropriate weight to the second seat. Maximum one seat payload is 90 kg.

FLAP SPEED LIMITS

140 Km/h - 10° TAKE OFF

120 Km/h - 28° 105 Km/h - 45°FULL

WARNING: Watch the maximum take-off weight of 472.5 kg

2.12 Types of operations

The aviation regulations and aircraft equipment limit this aircraft operating only to the VFR flights during the daytime.

WARNING:

IFR flights and flights in the icing conditions are forbidden.

This aircraft is minimally equipped with the following flight and navigation instruments – airspeed indicator, altimeter, compass, relative pitch indicator – and engine control instruments - manometer, thermometer, tachometer a fuel level indicator for each fuel tank.

2.13 Fuel

This aircraft is equipped with 2 fuel tanks; one tank in each wing. Each fuel tank volume is 65 litres. The total fuel volume is 130 litres. Minimum start fuel volume is 2x10 litres Inexhaustible volume 2x1litres Used fuel BA 95 Natural

2.14 Other restrictions

It is forbidden to open the cabin door when airborne and smoke onboard.

In case that the aircrarft is being operated while OAT is more than 20 °C dismount the carbon heating cover and hot airintake hose of the cabin heating which is placed in the engine compartment on the radiator (it the aircraft is equipped with it).

2.15 Restriction placards

	TL ULTRALIGHT s.r.o. Airport - building no. 84 Hradec Králové Crech Republic
MODEL Yearof Manufacti	
SERIAL NO.	urte
RED ISTRATIO N NO .	
BUPTYWEGHT MAK, TAKEO FF WEG	нт

A	TRALIOHT	(0,1)	Jihra	ight
CZE	CH REPUBLIC	Minimum speed	65	Km/h
Registration		Cruising speed	180	Km/h
Manufacturer	TL-Ultralight s.r.o.	Manspeed	220 limited	Km/ħ
Type	TL 3000 Sirius	Ensty weight		Kg
Serial no.		Area	11,154	m2
Manufacture year		No of seats	2	
Model	Sirius	MTOW.	472,5	Kg
	Operational dat	as and rest	trictions	
Registration			This aircr	aft is not
Empty weight	0	Kg	subjected to the	
MT.OW.	472,5	Kg	approving of CAA CZ	
Maxusefull load		Kg	and it is operated on	
Mai. Luggage ve	25	Kg	the own risk of the	
Min plict weight	60	Kg	user Intetional spins,	
VNE	253	Kmh	stalls and	
Stall speed	65	Kmith	acrobatics are	
Maxapeed with			PROHI	BITED
Tape open	120	Km/h		
	W	eights		
MT.OW.	472,5	kg		
Empty veight	0	kg		
Luggage	25	kg		
Fuel tanks	2	3/4	1/2	1/4
Capacity in innes	130	97,5	65	32,5
Lugagge 29kg				
1040				
Without Luggage				
Fuel for 30 min.	7			

Section 3 Emergency procedures

3.1 3.2 3.3 3.4 3.5 3.6 3.7	Introduction Engine failure In-flight engine restart Engine on fire, smoke in the cabin Descending flight Emergency landing Unintentional spin recovery	23 23 24 24 25 25 25 25
3.7 3.8	Other emergency cases	25 26

3.1 Introduction

Section 3 provides the procedures and special processes in case of emergency that can occur. If the pre-flight preparation and maintenance are properly conducted, the aircraft and engine emergency cases will be exceptional. To cope with emergency, the basic procedures described in this section can be executed.

3.2 Engine failure

- 3.2.1 Engine failure during take-off
 - 1. Engine control lever turn down to idle run
 - 2. Brake intensively
 - 3. Ignition switch off
- 3.2.2 Engine failure during the flight at the altitude up to 200m
 - 1. Speed glide at the speed of 120 km/h
 - Altitude up to 50 m land in the take-off direction
 50 m and above choose an appropriate area without obstacles
 - 3. Flaps as necessary
 - 4. Fuel tap close
 - 5. Ignition 2x switch off
 - 6. Main switch switch off
 - 7. Balancing as necessary
 - 8. Safety belts fasten
- 3.2.3 Engine failure during the flight at the altitude above 200m and above
 - 1. Start up the engine see section 3.3
 - 2. If the engine fails to start running follow the procedure provided in the paragraph 3.2.2

WARNING:

Never allow the instrument airspeed to drop under 70 km/h

3.3 In-flight engine restart

1. Speed	glide at the speed of 140 km/h
2. Altitude	min. 200m

switched on

- 2. Altitude
- 3. Ignition 2 x switched on
- 4. Main switch
- 5. Fuel level indicator
- 6. Fuel tap
- 7. Gas lever
- 8. Balancing
- set to ¼ of the throttle

open Left or Right fuel tank

check the fuel level

- 9. Starter
- as necessary
- push the starter button

If the engine fails to restart, follow the procedure provided in the paragraph 3.2.2

3.4 Engine on fire, smoke in the cabin

- 3.4.1 A fire on the ground with the engine running
 - 1. Fuel tap close
 - 2. Gas lever full throttle
 - switch off 3. Ignition 2x
 - 4. Main switch switched off
 - 5. Leave the aircraft and extinguish the fire

3.4.2 Inflight fire

- 1. Heating close
- 2. Fuel tap close
- 3. Gas lever full throttle
- switch off after stopping the engine 4. Ignition 2x
- 5. Main switch switched off
- 6. Area selection land at the closest airfield, if the airfield is too distant, choose an emergency landing area
- 7. Emergency landing the procedure is described in the paragraph 3.6.1
- 8. Leave the aircraft and extinguish the fire

NOTE:

Do not start up the engine after fire extinguishing.

3.5 Descending flight				
	1. Airspeed 2. Flaps	140 km/h closed		
3.6 Em	ergency landing			
	 3.6.1 Emergency landing 1. Emergency landing 2. Wind direction and 3. Fuel tap 4. Ignition 5. Main switch 6. Flaps 7. Balancing 8. Safety belts 	g area	suitable area selection choose the optimal landing direction close switch off switched off as necessary as necessary fasten	
3.	6.2 Landing with the da	maged under	carriage	

1. In case of main undercarriage leg failure, land on the undamaged leg side; hold the aircraft on this side above the ground as long as possible by using the elevators.

2. In case of nose gear damage hold the fuselage front elevated as long as possible.

NOTE:

In order to decrease the landing speed as much as possible, try to land in a suitable area and against the wind.

3.7 Unintentional spin recovery

 Gas lever Pitch controls Rudder 	idle run set to the neutral position step on the pedal against the rotation
direction	
3. Roll controls	push and hold till the rotation stops
4. Rudder	set the rudder to the neutral position as soon as the rotation stops
5. Roll controls	pull and recover from the dive

WARNING: Intentional spins are forbidden!

3.8 Other emergency cases

3.8.1 Ultimate aircraft control loss

1. Activation handle	pull
2. Safety belts	fasten
3. Fuel tap	close
4. Other switches	Switch off

In case that all previous procedures fail use the rescue system. In general, it is recommended to use the rescue system in case of ultimate aircraft control loss, for example in the event of its destruction.

3.8.2 Vibrations

- 1. Gas lever set the engine regime with the lowest vibration level
- 2. Landing at the closest airfield or emergency landing according to paragraph 3.6.1

3.8.3 Carburettor icing

- 1. Airspeed 140 km/h
- 2. Gas lever set to ¼ of the throttle
- 3. Icing area leave

4. After leaving the icing area, increase the engine power output gradually.

If the engine power output loss still occurs, land at the closest airfield or choose emergency loading according to paragraph 3.6.1

CAUTION:

Carburettor icing is indicated by the temperature increase or engine power output decrease.

Section 4 Normal procedures

4.1 Introduction		28
4.2 Pre-flight inspection		28
4.3 Normal pr	ocedures and action list	30
4.3.1	Cockpit post-boarding actions	30
	Pre-start actions and starting up Engine test	31 31
4.3.4	Taxiing	32
4.3.5	Pre-takeoff actions	32
4.3.6	Take-off	32
4.3.7	Climb	32
4.3.8	En route flight	33
4.3.9	Descent	33
4.3.10	Pre-landing actions	33
4.3.11	Landing	34
4.3.12	Repeated landing	34
4.3.13	Post-landing actions	34
4.3.14	Engine stopping	34

4.1 Introduction

Section 4 provides an action list and recommended procedures.

4.2 Pre-flight inspection

Execute the inspection systematically so that nothing is omitted. It is recommended to conduct inspection as shown in the picture and further according to the procedure hereunder.

The inspection starts with the engine and continues clockwise around the aircraft.

1. Engine

Dismount the engine cowling upper art Engine cowling inspection Engine bedding attachment status Fuel and electrical systems inspection Air and fuel filters inspection

Oil and cooling liquid cooler tightness inspection Sparkling plug tightness inspection Carburettor and suction silencer interconnection inspection Exhaust attachment status inspection Motor oil level inspection Expansion flask cooling liquid level inspection Fuel filter defecation Assemble engine cowling

2. Propeller:

Attachment and blades status inspection Propeller cone attachment inspection

In case the engine is cold, conduct several rotations in its rotation sense.

WARNING:

Rotate the propeller only when both ignition circuits and main switch are switched off

- 3. Undercarriage:
 - Dismounting the aerodynamic cover lower part and nose gear inspection
 - Inspection of the main undercarriage wheels self -fusing nut and the brake stirrup self -fusing nut above it and their paint securing
 - Main undercarriage aerodynamic covers inspection
 - Inspection of the atmospheric pressure of 25kPa (2.5 kp/cm²) in the tyres and their status
- 4. Right wing:
 - Surface and leading edge status inspection
 - Centroplane node points and wing struts inspection
 - Landing and positioning lights inspection
 - Flap and aileron attachments inspection
 - Fuel tank cap closure inspection.
- 5. Airframe right hand side:
 - Surface, airframe or paint cracks inspection
 - Static pressure sensors status and cleanliness inspection

- 6. Tail-plane:
 - Surface inspection
 - Attachment inspection
 - Tailplane and rudder swivel pins clearance inspection
 - Trim tab controls inspection
- 7. Airframe left hand side:

The same as for the airframe right hand side.

8. Left wing:

The same as for the right wing

- Pitot tube cleanliness of the openings
- 9. Cabin:
 - Ignition switched off
 - Main switch switched on
 - Instruments inspection
 - Steering correct function and clearance inspection
 - Mutual flaps lifting inspection
 - Cleanliness inspection
 - Remove or fix the loose objects
 - Safety belts inspection
 - Door and locking inspection

4.3 Normal procedures and action list

- 4.3.1. Cockpit post-boarding actions
 - 1. Foot controls clearance inspection
 - 2. Hand controls clearance inspection

closed

- 3. Balancing freedom of action
- 4. Gas lever freedom of action
- 5. Fuel tap
- 6. Fuel level indicators fuel level check
- 7. Instruments status inspection
- 8. Ignition switched off
- 9. Main switch switched off
- 10. Other switches switched off
- 11. Activation handle check
- 12. Activation handle fuse remove

NOTE:

Release the flag-fitted rescue system activation handle operational fuse – turn the handle towards both sides approximately 45° around the rotation axis and ensure there is a sliding contact between the handle and console casing

4.3.2 Pre-start actions and starting up

	0 1-	
1. Fuel tap	open	
2. Main switch	switch on	
3. Ignition 2x	switch on	
4. Instruments	switch on	
4. Gas lever	idle run, eventually 10 % of power output	
5. Balancing	on the centre	
6. Choke	according to the engine temperature	
7. Area in front of the propeller check clearance		
8. Starter	push	
9. After start-up	idle run	
10. Other instruments	switch on	
11. Choke	push in	
12. Engine heating	see paragraph 4.3.3	

Caution: Continue starting during maximum 10 sec., cool down for 2 min after that.

4.3.3 Engine test

The engine warm up procedure, and engine and ignition tests are in detail described in the engine manual.

Continue engine warming up for approximately 2 min. at 2000 rpm and continue at

2500 rpm until the oil temperature of 50 °C is achieved.

- Ignition test at 4.000 rpm, each loop rotation speed drop cannot exceed 300 rpm; the rotation speed difference between the loops cannot exceed 120 rpm.
- Gas lever at 5.000 rpm during 30 seconds 3x and smoothly transit from the idle run to the maximum rotation speed (5.800 rpm)
- Set idle run

Caution:

Watch engine pressure and temperature; they must fall within the operating values at all points.

4.3.4 Taxiing

switch on

Maximum speed 15 km/h. Execute the turns by the main undercarriage wheels braking.

Caution.

Never taxi with the door open, it could result in the door hinge damage.

Caution:

While taxiing and systematicly applied brakes could decrease the brake effectivity due to the hydraulic liquid overheating.

4.3.5 Pre-takeoff actions

1. ICOM Radio station

1. Brakes	brake
2. Balancing	on the centre
3. Flaps	Level 1 – 10.5°
4. Instruments	at operating values
5. Safety belts	buckled and fastened

4.3.6 Take-off

- 2. Gas lever smoothly to the maximum
 - Maintain the straight direction by the foot pressure on the rudder pedals
 - relieve the nose wheel slowly at the airspeed of 50 km
 - the aircraft starts to rise at the airspeed of 75 km/hour, push and hold till the airspeed of 130 km/hour is achieved

close

- transit smoothly to ascent at the airspeed of 120 km/hour
- set the engine rotation speed
- 3. Main undercarriage wheels brake
- 4. Flaps 50m

4.3.7 Climb

1. Gas lever	permanent maximum power output
2. Airspeed	120 km/hour

2. Airspeed

3. Balancingequilibrate4. Instrumentsvalues checking

4.3.8 En route flight

- 1. Gas lever
- 2. Balancing

cruising regime equilibrate

WARNING:

Do not execute sharp turns while flying at a low airspeed under 130 km/hour. Do not execute rapid aircraft controls motions while flying at a high airspeed above 150 km/hour and use maximum 1/3 of their scale.

4.3.9 Descend	
1. Gas lever	idle run
2. Balancing	equilibrate
3. Airspeed	150 km/h
4. Instruments	at the operating values

CAUTION:

To prevent engine overcooling when descending from higher flight levels, do not decrease to idle run but descend with a moderate engine thrust at the airspeed of 150 km/hour.

4.3.10 Pre-landing actions

4.3.10.1 Tailwind position actions		
 Safety belts 		fasten
2. Fuel level indicators	5	check
Fuel tap		Shift to the tank with the
		higher fuel level
4. Brakes		check
5. Space between the 3 and 4	round turns	check
6. Landing area		check
4.3.10.2 Actions after third turn		
1. Airspeed	140 km/h	
2. Flaps	grade 1 - 10.	5°

4. Final area check

4.3.10.3 Actions for the final

1. Airspeed	120 km/h
2. Flaps	grade 2 - 28°
3. Balancing	equilibrate
Decision altitude	
4. Airspeed	105 km/h
5. Flaps	grade 3 - 45°

4.3.11 Landing

At the speed of 75 km/hour, touchdown with the main undercarriage. Hold the aircraft only on the main undercarriage by pulling as long as possible. The nose wheel will ground by itself at the speed of 60 km/hour.

4.3.12 Repeated landing

1. Gas lever	full throttle
2. Flaps	grade 1 – 10.5°
3. Balancing	equilibrate
4. Airspeed	130 km/h
5. Flaps	retract

4.3.13 Post-landing actions

1. Gas lever	as needed
2. Flaps	retracted
3. Balancing	on the centre

4.3.14 Engine stopping

1. Gas lever	idle run
2. ICOM radio station	switch off
3. Instruments	switch off
4. Ignition	switch off
5. Other switches	switch off
6. Main switch	switch off
7. Fuel tap	close

WARNING:

Secure the rescue system before leaving the cockpit.

Section 5 Performances

5.1	Introduction	36
5.2	Specified data	36
5.2.1	Airspeed indication system error correction	36
5.2.2	Stall speed	37
5.2.3	Take-off	37
5.2.4	Landing	37
5.2.5	Climb	38
5.2.6	Cruising flight	38
5.2.7	Endurance	38
5.2.8	Wind effect during the take-off and landing	39

5.1 Introduction

Section 5 provides the airspeed indication system calibration data, stall speed, performances and other information. The data contained in this section have been calculated from the results of aircraft and power plant flight tests conducted in a good technical status and using usual piloting techniques.

If not specified otherwise, the performances presented in this section are valid for the aircraft maximum take-off weight and calculated for the conditions of the International Standard Atmosphere (ISA).

5.2 Specified values

IAS (km/h)	Cruising configuration (flaps closed)	Take-off configuration (flaps to 10.5°)	Landing configuration (flaps to 45°)
	CAS (km/h)		
50		58	55
60		67	66
70		76	76
80	85	86	86
90	93	95	97
100	102	105	107
110	110	114	117
120	119	124	127
130	128	134	
140	136	144	
150	146		
160	155		
170	164		
180	174		
190	183		
200	193		
210	203		
220	213		
230	223		
240	234		
250	244		

5.2.1 Airspeed indication system error correction

5.2.2 Stall speeds

	Flaps	Engine	Warning speed		Stall speed	
Drop	position	power	IAS	CAS	IAS	CAS
			(km/h)	(km/h)	(km/h)	(km/h)
	Closed	Idle run	68	75	60	69
	Take-off	Idle run	67	73	56	63
Horizontal	(10.5°)					
flight	Landing	Idle run	66	72	53	59
	(45°)					

NOTE:

The stall is indicated by aircraft pitching down, the aircraft is fully under control and horizontal flight can be resumed without a significant altitude loss.

5.2.3 Take-off

	Take- off run distance (m)	Take-off distance over a 15-metre obstacle (m)
Grass	103	283

NOTE:

The take-off distance stated in the table above is valid in the sea level and International Standard Atmosphere conditions and for the specified runway type.

5.2.4 Landing

Landing distance over		Of this landing run
a 15-metre obstacle		distance with the brakes
(m)		braking
Grass	246	85

NOTE:

The landing distance stated in the table above is valid in the sea level and International Standard Atmosphere conditions and for the specified runway type.

5.2.5 Climb

Optimal climb speed (km/h)	Rate of climb (m/s)	
120	4,82	

NOTE:

The climb stated in the table above is valid in the sea level and International Standard Atmosphere conditions and for the specified runway type.

5.2.6 Cruising flight

Regime	Economical cruise	Maximum permanen	Maximum Take-off
Time limitation	unlimited	unlimited	5 minutes max.
Engine rotations	4500	5500	5800
Flight altitude (ft)	IAS (km/h)	IAS (km/h)	IAS (km/h)
2000	178	22	227
4000	181	22	228
5000	180	22	229

5.2.7 Endurance

Regi	me	Maximum	Economical
		permanent	cruising
Engine rotations (rpm)		5500	4500
Airspeed	IAS (km/h)	221	178
	CAS (km/h)	214	172
Consumption	(litres per hour)	19	11
Range	(km)	1400	2000

NOTE:

The consumption and range values are valid for the aircraft maximum take-off weight and flight altitude of 2000 ft ISA.

5.2.8 Wind effect during the take-off and landing

Headwind	10 m/s
Crosswind	5,5 m/s
Tailwind	2 m/s

Section 6 Aircraft weight and centre of gravity position

6.1 Introduction	41
6.2 Centre of gravity positioning allowed range and maximum take-off weight	41
6.3 Empty aircraft centre of gravity determination	41
6.4 Required configuration aircraft centre of gravity determination	42

6.1 Introduction

Section 6 includes the allowed centre of gravity positioning and weight ranges and centre of gravity position determination procedure allowing safe aircraft operating.

6.2 Centre of gravity positioning permitted range and maximum take-off weight

Aircraft maximum take-off weight (kg)	472,5
Centre of gravity positioning permitted range (% MAC)	22 – 32,5

6.3 Empty aircraft centre of gravity determination

This paragraph defines the correct aircraft weighing procedure and empty aircraft centre of gravity position calculation.

1. Empty the aircraft (fuel, luggage and other stuff)

2. Place the aircraft on a triad of scales situated under the nose and main landing gear wheels. Level the aircraft in the horizontal position into the flight position by using suitable supports inserted between the scale and wheel (i.e. the cabin bottom edge must be in the horizontal position).

NOTE:

If you use the supports inserted between the scale and wheel to level the aircraft into the position do not forget subtract their weight from the value indicated by the scale.

3. Read the G_P and G_H values from the scales (G_H represents the sum of the values indicated by the scales under the wheels).

4. Calculate the total empty aircraft weight by using the following formula

 $G_{LET} = G_P + G_H [kg]$

5. Calculate the empty aircraft centre of gravity distance from the index plane (wing leading edge)

$$x_T = b - \frac{G_P \cdot (a + b)}{G_{LET}} [mm]$$

6. Calculate the empty aircraft centre of gravity position in % MAC

$$x_{\text{s}LET} = \frac{(x_T - c)}{SAT} \cdot 100 \text{ [%SAT]}$$

6.4 Required configuration aircraft centre of gravity determination

This paragraph defines the correct procedure for the aircraft centre of gravity position calculation with the different payload configurations.

Find the empty aircraft weight G_{LET} and empty aircraft centre of gravity position $x_{\% LET}$ (see section 2.8 Centre of gravity position or according to the section 6.3 procedure)

Flight and operational manual TL 3000 SIRIUS

1. Determine the weight of the onboard items for the required configuration: G_{POS} (crew weight), G_{PAL} (fuel weight), and G_{ZAV} (luggage weight in the luggage compartment)

2. Calculate the empty aircraft centre of gravity for the required configuration (by inserting the values derived from the step 1 a 2 into the formula)

% SAT

WARNING:

<u>The calculated x _{%CONFIGURATION} value must fit within the centre of gravity</u> positioning permitted range from 22 to 32.5 %MAC.

Flight and operational manual TL 3000 SIRIUS

Section 7 Aircraft and aircraft systems description

7.1 Introduction	45
7.2 Airframe	45
7.2.1 Fuselage	45
7.2.2 Wing	45
7.2.3 Horizontal tail plane (VOP)	45
7.2.4 Vertical tail plane (SOP)	45
7.3 Cockpit controls – instrument board	46
7.4 Undercarriage	47
7.5 Steering	47
7.6 Seats and safety belts	48
7.7 Luggage compartment	48
7.8 Cockpit door	48
7.9 Power plant	48
7.10 Fuel system	48
7.11 Electrical system	49
7.12 Pitot - static system	49
7.13 Rescue system	49

7.1 Introduction

Section 7 describes aircraft systems and operations

7.2 Airframe

TL - 3000 Sirius aircraft is a two-seat, strut type high-wing, single-engine monoplane with the nose type undercarriage. TL - 3000 Sirius airframe is an all composite shell structure.

7.2.1 Fuselage

The fuselage is made as a pure sandwich shell structure with the struts. The power plant is placed in the front fuselage portion, and the cockpit with the seats next to each other is situated behind the engine wall. The luggage compartment is located behind the pilot seats.

7.2.2 Wing

The wing is all composite with a single strut consisting of a metal tube and composite coating. It is designed as a two-spar sandwich shell structure with a root rib and another rib at the strut attachment point. The wing is equipped with the ailerons and simple flap. The fuel tank is located in the front root portion of the wing.

7.2.3 Horizontal tail plane (VOP)

Stabilizer is an all composite two-spar concept. The divided elevator is a single spar shell structure.

7.2.4. Vertical tail plane (SOP)

The aircraft keel is an integrated part of the fuselage shell structure and is reinforced with the struts. The rudder is a single-spar shell structure.

Flight and operational manual TL 3000 SIRIUS

7.3 Cockpit controls – instrument board

Position number	Instrument name	Position number	Instrument name
1	Altimeter	11	Starter button
2	Airspeed indicator	12	Switches and fuses
3	EFIS D100	13	Fuel selector (three-way)
4	Skid indicator	14	Choke control rod
5	Radio	15	Heating control rod
6	Transponder	16	Low battery warning
7	GPS	17	Fuel pump indicator
8	EMS D120	18	Autopilot instrument AP 74
9	Flaps controller	19	Rescue
			system
			activation
10	Fuel pressure		

7.4 Undercarriage

The undercarriage is a nose type with main wheels laminate legs and a springloaded nose wheel. The nose gear is towed and unsteerable. The main undercarriage wheels are equipped with brakes. The undercarriage is equipped with the wheels of \emptyset 400 x 100 in all positions.

7.5 Steering

Lateral and longitudinal steering is rod operated, directional steering is cable operated. The cockpit is equipped with dual yoke controls. The longitudinal balancing tab, also serving as surcharging, is Bowden operated. Flaps electric controls are supported by a servomotor with a transmission installed in the wing. The main wheel brakes are operated through the rudder pedals stirrups.

7.6 Seats and safety belts

The seats are removable and composed of an upholstered composite seat and backrest. The safety belts are four-point central buckle.

7.7 Luggage compartment

The luggage compartment is located behind the pilot seats and designed to accommodate maximum 25 kg of luggage. It is accessible from the pilot cockpit. In order to prevent a possible luggage intrusion into the cockpit, the luggage compartment is equipped with a removable net.

7.8 Cabin door

The cabin door opens upwards. To remain in the closed position, the cabin door is equipped with a latch mechanism and secured with an independent espagnolette mechanism. To remain in the open position, they are supported by gas operated springs.

7.9 Power plant

The aircraft is powered with Rotax 912 ULS engine. It is a four-cylinder, fourstroke opposite cylinders engine with a central camshaft and OHV distribution. Cooling is combined; the heads of cylinders are liquid-cooled and the cylinders are air-cooled. Lubrication is a dry box type. Ignition is dual non-contact condenser with a magneto. The engine is equipped with an electric starter, alternative current generator and mechanical fuel pump. The propeller is powered through an integrated reducer with mechanical vibration silencer. The propeller with the propeller cone cover is attached to the engine.

7.10 Fuel system

The fuel system is composed of two composite fuel tanks with the total volume of 130 litres that are installed in the wing, fuel piping, fuel content gauge and fuel filter. Each fuel tank is equipped with a sludge system. If required by a customer, a fuel pump is included in the system in some cases.

7.11 Electrical system

The electrical system uses the direct current voltage of 12V. The electrical system ensures functioning of the onboard instruments, flaps, radio station, and positional a landing lights.

7.12 Pitot-static system

The Pitot-static system includes the Prandtl pipe located on the left wing lead edge and static pressure gauges on the fuselage aft part. Static and overall pressure duct is ensured by PE tubes.

7.13 Rescue system

TL 3000 aircraft is equipped with the GRS 6/473 rescue system allowing saving the crew up to the speed of 310 km/h at the minimum altitude of 80 m above the ground. The rescue system consists of the projectile, parachute, activation handle, and rescue system anchorage ropes. The parachute and projectile are located behind the luggage compartment, activation handle under the instrument board lower edge to the left from the central console. When activated, the rescue system projectile and parachute are elevated outside the aircraft through the lid on the right hand side of the fuselage. The rescue system ropes are designed to ensure that the aircraft descends under the parachute canopy by its longitudinal axis under the angle approximately 15° to the horizon.

Section 8 Aircraft operating, servicing and maintenance

8.1 Introduction	51
8.2 Periodical inspection	51
8.3 Airframe service life	53
8.4 Aircraft modifications and repairs	53
8.5 Aircraft ground servicing	55
8.6 Aircraft ground transport	57
8.7 Aircraft lubrication plan	58
8.8 Cleaning and care	59

8.1 Introduction

This section contains the correct aircraft ground handling and maintenance procedures recommended by the manufacturer. Defines the inspection and maintenance requirements to ensure the aircraft required performances and reliability. Conducting the inspections defined by the manufacturer constitutes one of the terms for the continued aircraft guarantee.

8.2 Periodical inspections

Regular and thorough maintenance is a condition for reliable and safe aircraft operating. The guarantee inspection and inspections after 100, 300 and 1000 hours are recorded in the aircraft log.

8.2.1 Aircraft periodical inspections

This paragraph describes the inspection and maintenance intervals for the aircraft except the engine and propeller.

Inspection name	Aircraft flight hours - interval	Conducts
Guarantee inspection	-after first 25 hours of service	Manufacturer service centre
50-hour inspection	-every 50 ± 5 hours of service	Aircraft user trained by the manufacturer or manufacturer
100-hour inspection	a) every 100 ± 5 hours of service b) 12 month after the last 100-hour inspection	Aircraft user trained by the manufacturer or manufacturer
300-hour inspection	 every 300 ± 5 hours of service 	Manufacturer service centre

		TE 3000 311103
1000-hour inspection	a) every 1000 ± 10 hours	Manufacturer service
(evaluation of additional	of service	centre
aircraft service life)	b) 5 years from the	
,	production date	
	c) 5 years after the last	
	1000-hour inspection	
	d) the date determined	
	by the manufacturer	
	according to his	
	experience and actual	
	status evaluation during	
	the previous inspection	

- 8.2.2 Engine periodical inspections See the engine operating and maintenance manual published by the engine manufacturer.
- 8.2.3 Propeller periodical inspections See the operating and maintenance manual published by the propeller manufacturer.

8.3 Airframe service life

The initial airframe life span is defined up to 8.000 hours or 5 years from the production date. It will be adjusted according to the operational experience and airframe actual status as determined during the manufacturer service centre inspection.

8.4 Aircraft modifications and repairs

WARNING:

It is necessary to contact the aircraft manufacturer before every aircraft modification as well as the LAA CR before each significant modification or repair (influencing airworthiness).

CAUTION:

If the modification influences the weight, it is necessary to perform a new weighing and empty aircraft centre of gravity determination procedure according to section 6 and record the empty aircraft centre of gravity position in the table shown in section 2.8, update the weighing and centre of gravity position determination protocol and update the placards placed in the aircraft.

8.4.1. Bolt connections repairs

In cases of corrosion, bending, cracking or callosity, such bolt must be changed immediately. In case of a stripped thread, both the bolt and nut must be changed. The bolts can be replaced only by the same quality and norm bolts. Nylon insert self-locking nuts are designed for one-time use only. Full metal nuts can be used maximum 3 times after compressing the locking ring with pliers.

8.4.2. Rivet connections repairs

In case of rivet damage (loose or cut), it is necessary to remove the damaged rivet, check the connected surfaces for damage and install a new rivet. If the connection spots are damaged, it is necessary to change the connected parts or consult their repair with the aircraft producer. Use the rivets of the same quality and type when repairing.

8.4.3 Steering repairs

Rods, connecting parts, Bowden cables, bearings and other steering parts must not be damaged. Individual parts can be replaced only by original parts supplied by the producer. Any significant steering damage or excessive clearance can be repaired only by the manufacturer service centre. Any steering repair must be followed by a testing flight piloted by a testing pilot.

8.4.4. Airframe repairs

WARNING:

The wings. struts. empennage and fuselage are considered to be the parts of the principal structural elements. No intervention in the principal structural elements is allowed by the user without manufacturer's approval.

In case of minor airframe damage, the damaged surface can be filled with a filler, regrind and repainted. If a non-principal structural element (the lower and upper engine cover, wheel cover, nose wheel leg cover) is perforated, it can be laminated with one or two layers, and again refilled, regrind and repainted. For filling, use two-component automotive body filler according to its use instructions.

NOTE: The deeper airframe damages must be repaired by the manufacturer who will evaluate their effect on the structural stiffness and define repair method.

8.4.5. Fuel system repairs

If a fuel system leakage or impassability is detected, it must be repaired immediately. A visible defect, such as hose connection collar or fuel filter foulness, can be repaired by the aircraft user. Other repairs can be performed only by the manufacturer service centre.

8.4.6. Engine repairs

Any engine and its aggregates repairs can be performed only by the manufacturer service centre.

8.4.7. Electrical installation and instruments repairs

The user is allowed to perform accumulator recharging, cleaning contacts and reconnecting disconnected connectors. Other electrical installation and instruments repairs can be performed only by the manufacturer service centre.

8.5 Aircraft ground servicing

8.5.1. Refuelling

The manufacturer recommends a following safe aircraft refuelling procedure:

CAUTION:

Do not lean the platforms, ladders, hands or fuel containers on the aircraft shell skin, it could result in its damage.

CAUTION:

When refuelling, use only the containers and filter fillers approved for fuel storing and filling, do not use static electricity generating clothes.

- Prevent open fire occurrence nearby the aircraft, ensure that nobody is smoking nearby the aircraft
- Prepare a fire extinguisher suitable for flammable liquids extinguishing
- Ensure that the earthing cable attached to the right hand side main wheel leg is touching the ground
- Check if all electro appliances, ignition circuits and main switch are off
- Fuel tap check fuel closed
- Due to the fuel tank filler tubes emplacement, it is recommended to use an elevated platform when refuelling
- Unlock and unscrew the fuel tank cover lid
- Insert an approved filling funnel with a buckskin filter insert into the fuel tank filling tube
- Pour fuel slowly in and reduce staining the aircraft with the fuel to a minimum

Flight and operational manual TL 3000 SIRIUS

- When the fuel tank is full, take out the emptied funnel filler, screw the fuel tank lid back and lock it
- Wipe the aircraft surface thoroughly to dry out the fuel remnants
- 8.5.2 Parking

When parking, place the aircraft into a hangar or other sheltered area with stable temperature, sufficient ventilation, low humidity and dust-free environment.

- Fuel tap check fuel closed
- Switches off check
- Rescue system interlocking check
- Close and lock the cabin door
- Chock off the wheels with chocks from both the front and behind
- Slip the blade covers on the propeller, slip a suitable cover on the Pitot tube
- Cover the cabin with a suitable cover

CAUTION:

In case of parking outside a hangar, it is necessary to anchor the aircraft according to paragraph 8.5.3., in order to protect it against possible wind blast damage.

8.5.3. Anchorage

It is necessary to anchor the aircraft when parked outside of hangar. To anchor the aircraft, use the triad placed on the wing tip portion bottom and fuselage rear portion. Anchor the aircraft to sufficiently strong anchors.

- All instruments, switches and fuel tap off check
- Block the steering surfaces
- Check the rescue system securing and locking
- Close the ventilation windows
- Close and lock the cabin door
- Anchor the aircraft in the designated places to the ground

NOTE:

If long-term anchorage is expected, it is appropriate to cover the transparent cabin parts or eventually entire aircraft with a suitable canvas attached to the aircraft structure, especially in unfavourable climatic and weather conditions.

Flight and operational manual TL 3000 SIRIUS

8.5.4. Lifting the aircraft

The aircraft can be lifted by these parts:

 The front fuselage portion can be lifted by pushing the rear fuselage portion downwards at the point in front of the keel surface. The front fuselage portion can be then supported under the designated fixtures on the engine bed. These support points are accessible after the lower power plant cowling removal.

CAUTION:

Chock off the wheels with chocks from both directions when supporting the aircraft in the described points.

 The rear portion of the fuselage can be lifted by holding the keel bulkhead area and pushing upwards. The rear fuselage portion can be then supported in the rear luggage compartment bulkhead.

CAUTION:

When lifting the fuselage rear portion, do not push the fuselage pivot point and rear fuselage cover. They are not designed to this purpose and could be damaged.

 The wing can be lifted by pushing the wing upwards at the main spar area.

CAUTION:

Do not lift the wing by grabbing the wing tip curves.

8.6 Aircraft ground transport

8.6.1. Towing the aircraft

The aircraft can be handled primarily through the tow bar that can be attached by opening to the pin placed on the nose gear leg.

The manufacturer also approved following aircraft handling:

- Push the leading edge of the rectangular wing plan form portion
- Lift the nose wheel by pushing the rear fuselage portion downwards and turn the aircraft.

CAUTION:

It is necessary to avoid excessive pressure effect on the airframe structure and propeller, especially on the wing tips, struts, empennage, etc.

NOTE:

Passing through the narrow places requires assistance by instructed personnel ensuring aircraft wing tips handling.

8.6.2. Aircraft assembly and disassembly for the land transport The aircraft can be transported on the land communications when loaded on a trailer. It is necessary to disassemble the aircraft beforehand.

NOTE: The aircraft assembly and disassembly do not require a special qualification.

NOTE: After cleaning off the grease, all connecting points must be again greased with grease.

8.6.2.1 Aircraft disassembly procedure

- Remove the centroplane interior roof cover and assembly openings covers
- Unscrew the aileron control rods bolts
- Disconnect the Pitot-static system PE hoses
- Disconnect the wing electrical wiring
- Disconnect the wing fuel piping
- Disconnect and disassemble the connecting flap torsion drive in the fuselage
- Access the strut attachments by moving the aerodynamic fairings down the strut.
- Unscrew the main and auxiliary wing attachment and strut pins
- Take out the strut pins (the wing must be held by an assistant)
- Take out the main and support spar pins
- Push the wing out off the centroplane

CAUTION:

While the wings are dismounted, ensure that the flap torsion drives are not turned. To prevent undesirable flap torsion drives turning, secure them.

- Disassemble the fuselage tail cone
- Disassemble the trim tab drive lead
- Disconnect the elevator rod
- Remove the tailplane hinge vertical bolt
- Take out the tailplane from the front hinges by pulling backwards
- 8.6.2.2 Aircraft assembly procedure

The aircraft assembly procedure is identical with the disassembly procedure except that it is performed in vice versa order.

WARNING:

<u>After the aircraft assembly, it is necessary to check the steering functions, flaps</u> <u>mutual synchronisation, electrical, fuel and other systems.</u>

8.7 Aircraft lubrication plan

To lubricate the engine, use only an engine manufacturer prescribed oil according to the engine operating instructions. The motor oil exchange frequency is every 100 flight hour.

For the other lubrication points, practically any grease or transmission oil can by used. To make the difficult accessible points (hinges) lubrication easier, fill the oil in a syringe with a larger diameter hypodermic needle. 1 or 2 oil drops are sufficient to lubricate. The oil serves also as a conservator to several points.

Place	Lubricant	Lubrication frequency
Nose gear leg	Grease	Once per year
Aileron hinges, flaps	Transmission oil	After 50 flight hours
Rudder upper and lower hinge	Transmission oil	After 50 flight hours
Elevator hinge, balancing tab	Transmission oil	After 50 flight hours
Steering joints	Transmission oil	After 50 flight hours
Aileron joints	Transmission oil	After 50 flight hours

Some lubrication points are accessible after the cabin seats removal.

8.8 Cleaning and care

This section describes the procedures for cleaning and servicing the aircraft components

8.8.1 Aircraft skin

To wash the aircraft, use lukewarm water. The aircraft parts listed below must be washed and then dried out. To clean the flies, the car cleaning agents can be used.

Conserve the aircraft with the car body cleaning and conservation agents roughly 1 time per month.

Wait with the new aircraft first conservation approximately 1 month to let the new painting harden properly.

- Propeller blades and cone
- Wings and empennage
- Wing struts
- Undercarriage
- Engine cowling suction slots
- fuselage

8.8.2 Aircraft transparent parts

Wash, dry out and polish the cabin glass parts, use only buckskin which must be often washed in a clean water.

CAUTION:

Do not clean the glass cabin parts without moisturizing and do not use the chemical solvents or gasoline for cleaning.

8.8.3 Aircraft interior

Clean the cabin interior from the dirt and remove the garbage from the stowage space.

The seats can be removed from the cabin and brush the upholstery or clean it with warm water and detergent.

Flight and operational manual TL 3000 SIRIUS

Section 9 Amendments

9.1 Introduction	62
9.2 Inserted amendments list	62
9.3 Inserted amendments	63

9.1 Introduction

This section contains the amendments necessary for safe and effective the aircraft operating and for the cases of aircraft equipping with different optional systems and equipment not provided within the standard aircraft configuration.

9.2 Inserted amendments list

Date	Name of the inserted amendment

Flight and operational manual TL 3000 SIRIUS

9.3 Inserted amendments